skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prasad, Siddharth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The design of multi-item, multi-bidder auctions involves a delicate balancing act of economic objectives, bidder incentives, and real-world complexities. Efficient auctions, that is, auctions that allocate items to maximize total bidder value, are practically desirable since they promote the most economically beneficial use of resources. Arguably the biggest drawback of efficient auctions, however, is their potential to generate very low revenue. In this work, we show how the auction designer can artificially inject competition into the auction to boost revenue while striving to maintain efficiency. First, we invent a new auction family that enables the auction designer to specify competition in a precise, expressive, and interpretable way. We then introduce a new model of bidder behavior and individual rationality to understand how bidders act when prices are too competitive. Next, under our bidder behavior model, we use our new competitive auction class to derive the globally revenue-optimal efficient auction under two different knowledge models for the auction designer: knowledge of full bidder value distributions and knowledge of bidder value quantiles. Finally, we study a third knowledge model for the auction designer: knowledge of historical bidder valuation data. In this setting we present sample and computationally efficient learning algorithms that find high-revenue probably-efficient competitive auctions from bidder data. Our learning algorithms are instance adaptive and can be run in parallel across bidders, unlike most prior approaches to data-driven auction design. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. null (Ed.)
    A two-part tariff is a pricing scheme that consists of an up-front lump sum fee and a per unit fee. Various products in the real world are sold via a menu, or list, of two-part tariffs---for example gym memberships, cell phone data plans, etc. We study learning high-revenue menus of two-part tariffs from buyer valuation data, in the setting where the mechanism designer has access to samples from the distribution over buyers' values rather than an explicit description thereof. Our algorithms have clear direct uses, and provide the missing piece for the recent generalization theory of two-part tariffs. We present a polynomial time algorithm for optimizing one two-part tariff. We also present an algorithm for optimizing a length-L menu of two-part tariffs with run time exponential in L but polynomial in all other problem parameters. We then generalize the problem to multiple markets. We prove how many samples suffice to guarantee that a two-part tariff scheme that is feasible on the samples is also feasible on a new problem instance with high probability. We then show that computing revenue-maximizing feasible prices is hard even for buyers with additive valuations. Then, for buyers with identical valuation distributions, we present a condition that is sufficient for the two-part tariff scheme from the unsegmented setting to be optimal for the market-segmented setting. Finally, we prove a generalization result that states how many samples suffice so that we can compute the unsegmented solution on the samples and still be guaranteed that we get a near-optimal solution for the market-segmented setting with high probability. 
    more » « less